高斯都怕的数学天才是谁?高斯定理

2019-11-02 09:29栏目:文物考古
TAG:

“数学王子”高斯被誉为近代数学奠基者之一,与牛顿、阿基米德、欧拉并称“世界四大数学家”,是公认的对数学有卓越贡献的人物之一。高斯享有如此高的称誉,但是他也有佩服又害怕的人,这个是谁呢?

  有机化学是在资本主义大工业生产中,应社会的需要才产生和逐步发展起来的。

图片 1

  日益丰富的有机化学知识为合成有机化合物创造了条件。

高斯都怕的数学天才是谁

  在人工合成有机化合物中,染料首先异军突起,并迅速走向市场,创造了极大的社会效益。

这里说的人是罗巴契夫斯基。

  过去人们使用的染料都是从有机植物中提取的。但在1856年英国皇家化学学院霍夫曼的学生柏琴却在实验中偶然发现,利用无机物也可以人工合成染料,便改变了这种局面。

高斯、罗马契夫斯基和匈牙利的数学家波约几乎同时发现这个公设的独立性,从而可以从抛弃这个公设另以别的结论替代而得出其它的几何学。高斯虽然是“数学王子”,但他却害怕被人骂做疯子,所以始终不敢发表他的看法,波约把他的想法发表了,但在听说高斯早已有此想法,而自己的想法又没有得到进一步承认时,他也消沉了。只有罗巴契夫斯基挺身而出,发表了自己的研究成果成为一位勇敢的“叛逆者”。

  从此,人们有目的地先分析天然染料的结构,然后用无机物做原料,相继合成了多种染料。

现在,他创立的罗巴契夫斯基几何已得到了世界的公认,并成为广义相对论的几何支柱。在罗氏几何学中,过直线外一点可以作不止一条直线与已知直线平行,三角形的三个内角和小于180;,…… 等等。追求真理真的不是很简单,连大名鼎鼎的数学家高斯都害怕罗巴契夫斯基。他曾说到:“最怕那些波热亚人,他虽然发现了真理,却害怕发表。"

  德国是个有机化学研究异常活跃的国家,染料的合成研究以野火燎原之势在德国迅速发展起来,并很快把入工染料堆人了市场,合成染料给德国的化学工业增添了异彩。

高斯定理

  在 1886年到 1900年期间,德国 6家最大的化学公司共取得了948项染料专利,而英国只取得86项,德国人几乎垄断了全世界人造染料的生产。

高斯定理也称为高斯通量理论,表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。

  德国人发了大财!

  人工染料的合成缓解了大工业生产中的纺织业对染料的需要。而且由于成本低,价格相对便宜,很受欢迎。

  可以说,人工合成染料的发现,真正达到了丰富人民生活,造福于人民的目的。

  但是事物的发展往往是出人意料的。“有利必有弊”这是中国的一句古话。当诺贝尔研制出近代炸药时,他可能没有想到,仅仅在他去世后的半个世纪,就有数以千万计的人倒在他所研制的炸药的硝烟中……

  1833年10月21日,一个瘦弱的婴儿在瑞典首都斯德哥尔摩诞生,听他的啼哭,看他的身体,使人难以相信,他就是后来的震撼了整个世界的炸药大王艾尔福雷德·诺贝尔。

  诺贝尔的父亲伊墨纽·诺贝尔,是一个普通的机械师,很早就在工厂做工,虽然他没有受过高等教育,可是他喜欢化学实验,特别钟爱于制造炸药,对建筑学也很有见解,是个热心于科学的人。

  诺贝尔从小体弱多病,但意志顽强,从不甘心落后,父亲对他非常赏识,也很关心诺贝尔的兴趣爱好。

  一天,年幼的诺贝尔看见他的父亲又在制造炸药,便问道:

  “爸爸,炸药伤人,是可怕的东西,你为什么要制造它呢?”

  “因为它还可以用来开矿,筑路,许多地方都需要它呀!”父亲说。

  “那我长大了也要做炸药。”诺贝尔似懂非懂地点了点头说。

  “我倒希望你成为一名出色的机械师。”父亲抚摸着他的头说。

  1841年,诺贝尔8岁,进了当地的一所正规小学学习,但他只读了一年就被迫退学了。

  1842年春,他的母亲带着他们兄弟几个离开了家乡来到了圣彼得堡,与父亲一起生活。

  由于此地没有瑞典学校,诺贝尔兄弟只能由家庭教师教授学业。

  这时他的父亲因创制了一种水雷,受到了一个俄国将军的重视,后来又从事机械发明,境遇已经有了很大的改变。

  在父亲的鼓励下,年岁稍大的诺贝尔就离开家庭,去各地旅行,访求名师。18岁时,他对科学、文学和哲学已经有了一定的修养。

  对年轻的诺贝尔来说,学习上的最大障碍,就是语言的障碍。为了学好外语,他常常选一些外国名著译成瑞典文,再转译成外文,然后将译稿与原著对照,来检查自己的掌握情况。依此方法,他先后学会了俄文、英文、法文和德文。

  1852年,他回到家里,在父亲的工厂里工作,渐渐在技术上显示出他的非凡才能。父亲有了这个得力的助手,事业如日中天,日渐兴旺。

  然而,好景不长,由于俄皇易人,俄国政府废弃前约,使父子俩的事业跌入深谷,1859年,父子俩不得不返回瑞典再谋生计。

  当时,许多国家迫切要求发展采矿业,加快采掘速度,炸药不能适应这种需要,成了一个急待解决的大问题。

  年近60的父亲,回国后重整旗鼓,和三个儿子一起研究制造炸药。

  1862年,父亲突然中风,从此再未能康复。

  按照父亲的想法是要用硝化甘油制造出更好的炸药。

  硝化甘油是意大利人苏雷罗在 1847年用硝酸和硫酸处理甘油得到的一种有机化合物,是一种比其他火药威力大得多的猛烈炸药。

  但是,这种炸药特别敏感,容易爆炸,制造、存放和运输都很危险,人们不知道该怎么使用它。

  他的父亲在实验中和前人一样失败了,而且不能再实验了。诺贝尔继续了父亲的实验和研究,从此,他就在死神的威胁下为人类向大自然索取动力。

  1862年的夏初,诺贝尔做了一次十分重要的实验:

  在一个小玻璃管内盛硝化甘油,塞紧管口;然后,把这个玻璃管放入一个稍大一点的金属管内,里面装满黑色火药,插入一只导火管后,再把金属管塞紧。

  装好以后,诺贝尔兄弟俩人一起来到水沟旁,点燃导火管后,把金属管扔入水沟。

  结果,发生了剧烈的爆炸,水花四溅,地面震动,显然比同等数量的黑色火药的爆炸要猛烈得多。

  这次成功的实际意义不在于实用,而在于诺贝尔第一次发现了引爆硝化甘油的原理——黑色火药的爆炸,可以引发分隔开的硝化甘油完全爆炸。

  1863年,诺贝尔和他的弟弟一起,在斯德哥尔摩海伦坡建立了一所实验室,从事硝化甘油的制造和研究。在实验中他努力寻求硝化甘油爆炸的引爆物。

  经过无数次的试验,这年的年底,诺贝尔终于发明了使硝化甘油爆炸的有效方法。

  起初,诺贝尔用黑色火药作引爆物;后来,他发明了雷管来引爆硝化甘油。

  1864年,他取得了这项发明的专利权。

  但是,在当时大批量生产硝化甘油,仍然充满了风险;而且在运输和贮存时,经常发生事故。诺贝尔是个永不满足而又具有丰富想象力的人,他继而发明了固体炸药,后又以胶质炸药取代了它。

  诺贝尔发明炸药经不断地创新与改进,在西欧各国的爆破工程中被广泛采用,盛行起来。

  炸药的广泛使用,给采矿和筑路带来了效益,也给诺贝尔带来了巨大的财富。但他关注的并不是钱。在诺贝尔著名的遗嘱中,他把财产中的大部分留作基金,以基金的利息作为奖金,每年颁发一次,给予在物理、化学、生理和医学、文学、和平事业方面有贡献的人。

  这就是自1901年起颁发的举世闻名的诺贝尔奖金。

  物理化学的产生

  19世纪,西欧及北欧各国仍处于工业革命时期,各工业部门以更高的速度向前发展;地质部门为提供更多的矿物原料,进行大规模勘探和广泛的地质科学研究;在化学理论的领域正展开一场辩论……

  于是分析化学便肩负起了两个重要方面的任务,一方面为生产的需要,为地质科学的发展,提供更多更可靠的分析方法;另一方面,要为各种新科学理论的建立、巩固、完善继续作出贡献。

  因此,19世纪以来,分析化学得到了迅速的发展,化学家们几乎分析了他们能找到的一切化学物质。通过分析,进一步研究它们的组成和性质。

  早期的分析,主要是组成分析。这一时期对组成的化学分析的特色,主要是定量化,从一般的定量发展到微量化,并形成分析的系统方法。

  19世纪早期,系统定性分析日渐成熟。德国化学家罗塞,比较明确地提出了系统定性分析方法,这种方法经过深入研究后,越来越完善,被用于地质普查、冶金、考古、医药、食品等方面成分分析工作。

  定性分析,逐步向定量分析转化,逐步形成重量分析和容量分析方法。

  当时的定量的分析是把析出的沉淀烘干灼烧,仔细称量获得的定量,分析结果是很准确的。这种方法称为“干法分析。”

  在“干法分析”发展的同时,“湿法分析”也发展起来了。

  “湿法分析”早期是滴定分析。以滴定法为主的容量分析,在19世纪30年代以后,达到了极盛时期。容量分析中的关键要素是指示剂,在 1893年,灵敏的指示剂已有14种之多。

  在无机化学、分析化学、有机化学发展的同时,物理学和化学的边缘学科——物理化学也发展起来了。

  物理化学的形成是19世纪下半叶的事情。这个时期的资本主义生产造成了比过去世世代代总共造成的还要大的生产力,又以异乎寻常的精力致力于自然科学,创造了无可比拟地超过以往各个时代的高度发达的技术。自然科学的各个学科,包括物理化学,正是在这个时期得到了迅速的发展。

  “物理化学”这个术语,是18世纪中叶首先为罗蒙诺索夫所使用的。但这一学科真正成功地发展起来,有赖于荷兰的范霍夫、德国的奥斯特瓦尔德,他们两人在1887年合办了《物理化学杂志》,此后物理化学的概念被化学界所接受。

  物理化学这一学科的理论体系和各不同分支的建立,与各国化学家坚持不懈的研究和实验分不开,更与范霍夫、奥斯特瓦尔德、阿累尼乌斯三位伟大化学家的名字分不开。

  他们三人后来都获得了诺贝尔化学奖金,被一些科学史家称为“物理化学三剑客”。

  化学热力学是以热力学定律为基础的,还包括质量作用定律和化学平衡。

  质量作用定律的主要内容包括:

  ①化学反应中质量的作用,也就是反应“力”的作用,这一作用与反应物的质量乘积成正比;

  ②如果相同质量的不同体积的物质起作用,这时质量的作用与体积成反比。

  这一定律,经范霍夫等人的研究,达到定量化,其现代形式可以表示如下:

  A+B=C+D①

  正反应速度V=K〔A〕·〔8〕(2)

  正 1

  负反应速度V=K〔C〕·〔D〕(3)

  负 2

  在反应速度的研究基础上,又提出了化学平衡的概念。

  法国科学家勒夏特列创立了比较完整的化学平衡学说,提出了著名的勒夏特列平衡原理,这一原理描述了化学体系中的各种因素对化学平衡状态的影响。

  美国化学家吉布斯又把化学平衡的研究由单相平衡推进到复相平衡,提出著名的“吉布斯相律”。

  吉布斯的工作,使质量作用定律、勒夏特列原理等经验定律纳入了和谐的理论体系之中。

  辉煌的数学世纪

  数学之王

  高斯,1777年4月30日生于德国布伦什维克,父亲是一位勤杂工,没有受过正规教育,母亲是一位石匠的女儿。

  高斯的舅舅是一位精明能干又懂得不少知识的商人,经常给他讲故事,并教他读书写字。

  高斯有一个出众的数学头脑,很小就表现了杰出的数学才能。在他3岁的时候,有一次,当工头的父亲正在算帐,给工人发薪水,这时小高斯怯生生地说:“爸爸,您算得不对,应这样算。”

  原来,小高斯一直暗地里跟着父亲计算。

  “真的吗?”父亲惊异地复核了一次,果然孩子说的是正确的。

  7岁时,高斯上了小学,特别喜欢算术课,在他三年级时,又一次表现出了他非凡的数学才能。

  一天,彪特耐尔老师照例来上算术课。

  “今天我给大家出一道难题,计算从1到100所有数字的总和,看谁能做出来,如果做好了,就把答案送到讲台上来。”彪特耐尔看不起这些农村的孩子,不安心在乡村小学的教学工作。

  这一道题对于小学生来说,确实是一道难题,只见其他同学都在费劲地把数字一个接一个地相加着,但没过多久。小高斯就把答案交到讲台上去了。答案是5050,一点没错!

  高斯怎么算得如此迅速呢?原来他没有把100个数字机械地累计相加,而是发现了其中的规律,就是距两端等远的两数之和都等于 101,即

  1+100=101;

  2+99=101;

  3+98=101;

  ……

  50+51=101。这样一共是50个101,就推出从1到100的数字总和是:

  50×101=5050

  高斯的才华使彪特耐尔非常惊异,同时感到内疚。他原来认为农村孩子笨,而高斯比城里的孩子还要聪明,从此他便安心于乡村教学,努力教好这些孩子们。为了使高斯的求知欲能在自己的课堂之外得到更多地满足,老师特地从汉堡买来各种数学书送给高斯。

  在这以后的几年里,彪特耐尔悉心教导高斯,和他一起讨论问题,促使高斯加速进入数学王国。

  由于高斯在童年时代就表现了惊人的数学才能,因而受到了布伦什维克公爵的重视,他答应资助高斯接受高等教育。1792年,高斯被送到卡罗琳学院深造。

  1795年,高斯进入哥廷根大学。从此踏上了科学研究的道路,在数学、物理学和天文学方面都做出了杰出的贡献。

  在数学方面,高斯第一个用尺规作出了正十七边形,解决了这个数学史上著名的难题。

  尺规作图,是古希腊学者提出的数学问题。在高斯以前,人们已经能用直尺和圆规作出正三边形、正四边形、正五边形、正六边形、正十边形和正十二边形。当他们试图作正七边形、正十一边形、正十七边形时,遇到了很大的困难。

  于是他们认为这样的正多边形不可能用尺规作出。高斯把正十七边形作出来了,是一个非常了不起的成就,推翻了人们的错误认识。高斯还进一步证明了这种作图可能性的条件。

  在代数学方面,高斯证明了代数基本定理,即每个代数方程必具有一个复数形式的根。在数论中,他19岁时就发现并证明了二次互反律。他证明了算术基本定理——每个自然数都可以表示为素数乘积的形式,而且这种表示是唯一的。

  高斯还对数学的许多分支,像复变函数、微分几何、超几何级数、统计数学、椭圆函数论、分析等都有重大贡献。

  由于他对数学的许多贡献和许多新思想,而受到了所有数学家的赞誉。一位数学家说:“如果把18世纪的数学家想像为一系列的高山峻岭,那么最后一个使人肃然起敬的峰巅是高斯——那样一个广大的丰富的区域充满了生命的新元素。”

  由于高斯的光辉成就,他受到了同代及后代人的赞扬和尊重,并称他为

  “数学之王”。

  高斯一生善于独立思考,不断地学习和钻研。他对自己的论文都是深思熟虑并经过反复修改才拿去发表,不成熟的论文决不发表。他的座右铭是:

  “宁可少些,但要好些。”

  但是,高斯的谨慎、求全、求好的品德,一方面在某种程度上影响了他的聪明才智更好地发挥,一方面由于他不愿意把不成熟或他自己认为不成熟的数学思想公诸于世,而又影响了数学的更快发展。

  美国数学家贝尔曾说:在高斯死后,人们才知道他早就预见了一些 19世纪的数学,而且在 1800年之前已经期待它们的出现。如果他能把所知道的一些东西泄漏,很可能现代数学比日前还要先进半个世纪或更多的时间。

  高斯对千古之谜的第5公设问题也进行了研究。

  早在1792年高斯15岁时,就有了非欧几何的思想萌芽,17岁时发现欧氏几何平行公设不能成立。

  高斯在进行大地测量学的研究中,对球面内的几何学进行了研究。后来在研究前人经验的基础上,用包括反证法在内的各种方法对第5公设进行了试证。

  经过多年的探索,高斯在1816年终于发现,第5公设根本不可证明。并由此发现,在欧氏几何之外,实际上还存在另外一种几何,高斯先后把它称为:“反欧几里德几何”、“星际几何”、“非欧几里德几何”等,这就是

  “非欧几何”。

  高斯的非欧几何思想十分卓越,而且形成得很早,多次发现了一些重要定理。

  由于欧氏几何根深蒂固,同时,早已闻名于欧洲数学界的高斯特别谨慎,又受康德唯心主义学说的压力,而害怕别人嘲笑他“无知”,怕人们发出“愚人的叫喊”和攻击,不敢发表自己的观点和研究成果,并终止了对非欧几何的研究,直至1855年2月 23日逝世。

  这样,一朵有可能在高斯那里开出的科学之花,含苞萎缩了。

  另一路进军者

  在高斯发现非欧几何的同时,匈牙利数学家亚诺什·波耶也几乎同时发现了非欧几何,并勇敢地把它公诸于世。

  且说1820年的一天,在维也纳工程学院读书的一个青年小伙子收到了一封家信,父亲在信中说:“你必须像痛恶淫荡的社交一样痛恶它。它能剥夺你的所有的闲暇,你的健康,你的休息,以及一生的所有快乐。这个无底的黑暗或许可以吞吃掉一千个灯塔样的牛顿,而在大地上将仍不会有光明。”

  痛恶什么?竟如此严重!

  这是一封父亲亚诺什·法卡什写给儿子亚诺针·波耶的信,严厉告诫儿子放弃对欧氏几何第5公设的证明。

  法卡什之所以对第 5公设的证明深恶痛绝,是由他亲身体验总结出来的。

  法卡什有一肚子的苦水。

  法卡什早年在数学上很有造就,对第5公设之谜也产生了浓厚的兴趣,在1796年有幸去德国游学,在哥廷根结识了数学之王高斯,共同的志趣使两人很快成为关系密切的挚友,从此不断地进行书信往来,研讨学术问题。

  不过,高斯和法卡什研究第5公设有所不同。高斯认为第5公设不可证明,并发现了非欧几何。而法卡什始终认为第5公设是可以证明的,因此注定要失败。

  法卡什在第5公设的研究中,耗费了大半生时间,始终没有在数学上取得重大成就,只能在一个小城中学当一个普通的数学教师。

  法卡什回想自己的一生,虽然耗费了大量的时间和精力,却得不出任何结果,断送了光辉的前程,就连数学之王高斯在第5公设的研究中,也没有发表任何成果。

  前人的失败,自己的教训,使法卡什对这个数学之谜深恶痛绝。当得知儿子步人后尘时,做父亲的怎能不苦心相劝呢?

  大家不禁要问,波耶是怎样对第5公设产生兴趣的呢?他听从父亲的劝告了吗?

  波耶于 1802年出生在匈牙利的柯罗日瓦尔,在父亲的影响下,从小喜欢数学。波耶中学毕业后,在父亲的指导下,已掌握了高等数学的基础知识。这时,法卡什想把儿子送到高斯手下深造,未能实现。

  1820年,波耶以优异成绩考入维也纳皇家工程学院,但对数学仍然抱有特殊的偏好。

  就在这一年,波耶开始试证第5公设,并征求父亲意见。法卡什知道后,多次写信劝告:“老天啊,希望你放弃这个问题……”“希望你不要再尝试了……我熟知一切方法都到尽头了;并且我在这里埋没了人生的一切亮光,一切快乐。”

  波耶不听父亲的劝告,没有被父亲的悲观言论所吓倒,执意研究第5公设。

  1822年,波耶从维也纳工程学院毕业后,因成绩优秀,被留校进行特种军事工程研究,一年后,被征到军队服役,成为一名勇敢的军官。

  从工程学院的学习,到后来的军旅生活,波耶一直把全部业余时间用于第5公设的研究上。在研究过程中,他广泛吸取前人的研究成果,力图证明第5公设。

  经过几年的苦心研究,波耶终于证明第5公设在欧氏几何理论中是一个独立的公设,企图用欧氏几何的其他公设来证明第5公设是不可能的。从而解决了这一数学难题。

  1823年,波耶写成论文《空间的绝对几何学》,阐述这一发现。他在写给父亲的信中说:“我坚决地决定出版自己的关于平行线的著作,只要情况一旦允许我把资料整理就绪。现在我还没有达到目的,但是我已获得这样可注目的一些结果;如果这些遭受摧残的话,那真是太可惜啦。”

  法卡什不相信21岁的儿子会超过自己,更不相信儿子能在平行线理论上有什么作为。

  波耶在证明第5公设不可证明后,由此引出一条相反的定理:过直线外一点,可引无穷多条平行线。从这一定理出发,波耶又推出了一系列新的定理,从而形成了一个严密而完整的新的几何系统,创立了非欧几何。

  当高斯发现非欧几何时,由于害怕遭到传统势力的围攻,而不敢发表,把它锁在书柜里。但年轻的波耶勇敢地向传统观念挑战,决心把自己的见解公布于众。

  1825年,波耶在完成了他的非欧几何学后,亲自回到柯罗日瓦尔,向父亲详细介绍自己的研究过程和结果,并请求帮助把自己的论文《一种包含绝对真实的空间科学》出版。

  法卡什已失去了探索和创新的勇气,在传统观念的束缚下,对波耶非凡的工作抱着不以为然的态度,拒绝了儿子的要求。

  波耶对父亲感到失望,便向维也纳工程学院的老师求援。1826年,他把非欧几何学的德文抄本,寄给艾克维尔数学教授。不幸的是,这个抄本被遗失了。

  波耶毫无办法,只好再去求父亲。在多次请求后,法卡什才勉强同意把波耶的论文以附录的形式,出版在他自己正在写的《试论数学定理》这一著作中。

  法卡什似乎看到波耶发现了什么新东西,但无法评价。从小就崇拜高斯的波耶,请父亲把自己的论文寄给高斯,希望能得到这位数学权威的评价。1831年6月,法卡什写了一封信连同儿子的论文一起寄给了高斯。

  信件向哥廷根飞去,也带走了波耶的心。他多么希望得到高斯的支持啊!

  波耶急切地盼望高斯的回信,满怀信心地认为,对数学无所不知的高斯一定能理解和赞赏自己的研究工作。

  1832年3月,高斯终于回信信了。

  高斯在信中说:“……称赞他等于称赞我自己,因为这研究的一切内容,你的儿子所采用的方法和他所得到的一切结果,几乎全部和我的一部分在30至35年前已开始的个人沉思相符合。……关于我自己的著作,虽只有一小部分已经写好,但我的目标本来是一生里不愿意发表的,大多数人对于那里所讨论的问题都抱着不正确的态度。”

  他又说:“使我快乐地感到惊奇的是现在可以免去这劳力的耗费,并且特别高兴的,在我面前有这样惊异姿态的正是老友的儿子。”

  从这封信的内容来看,高斯肯定了波耶的研究成果,但也不能过分称赞,那样等于自夸,之所以不愿意发表自己的成果,是为了回避传统势力的围攻。

  波耶对高斯模棱两可的回信很失望,同时为和高斯的想法相符合而感到欣慰,更加坚信自己的理论是正确的,期待着尽快得到科学界的承认。

  由于学术上的分歧,法卡什只给很小的篇幅附印儿子的论文。经过一再压缩,波耶的论文和他父亲的著作终于在1832年出版了。

  罗巴切夫斯基的非欧几何

  然而俄国数学家罗巴切大斯基的非欧几何论文,已经在这之前发表了。

  就在波耶论文发表的这一年,俄国数学家罗巴切夫斯基因为车祸,几乎成了一个半残废,第二年从军队退役,回到老家。

  在这以后,波耶一直过着穷困潦倒的生活。就是在这样艰难困苦的生活中,他仍然从事非欧几何的研究。

  1860年,波耶逝世。他的非欧几何没有得到世人的承认。

  就在波耶潜心研究第5公设,并发现非欧几何时,比他大10岁的俄国数学家罗巴切夫斯基也大体同时发现了非欧几何。

  罗巴切夫斯基于1792年出生在俄国的下诺夫哥罗德,就是现在的高尔基市。他3岁丧父,由善良的母亲把他一手拉扯长大。

  由于家境贫寒,生活都难以维持,母亲样无法把儿子送去读书,后来在政府的救济下,罗巴切夫斯基才转为公费上学。

  1808年,罗巴切夫斯基进入喀山大学学习。他更加发奋读书,努力学习。他的思想活跃,具有生动活泼的气质,敢于主持正义,见义勇为,并且关心他人,助人为乐。

  罗巴切夫斯基有坚强的意志,惊人的毅力,能勤奋地学习,不断地探索,又有良好的学习方法,因此他的各门功课都是优秀,特别是他的数学才能和独创精神赢得了全校师生的赞扬,为他后来攀登数学高峰奠定了坚实的基础。

  1811年,罗巴切夫斯基大学毕业,因成绩突出而留在喀山大学任教。由于他在数学上的成就,22岁时就当了喀山大学的副教授,24岁晋升为教授。

  罗巴切夫斯基在1816年出任教授后,也加入了试证第5公设的行列,通过几年的努力,他失败了。但是,在失败中,罗巴切夫斯基对第5公设产生了怀疑,并进一步认识到第5公设是不可证明的。

  在第5公设不可证明的思想基础上,罗巴切夫斯基开始探索一种新的几何学体系。1823年,他在一份教学提纲中提出建立新几何体系的可能性,并把它上交给校方。

  校长马格尼斯基认为,罗马切夫斯基的设想是狂妄的,彼得堡科学院认为他的学说是邪说。

  在困难和挫折面前,罗巴切夫斯基没有像其他数学家那样失败后就放弃了对第5公设的研究,他的最大特点是对于大家难以解决的问题敢于提出新见解,敢于碰硬,敢于创新,勇往直前。

  罗巴切夫斯基对新的几何学体系进行不断的理论探索。他提出一个与第5公设相反的假设:过直线外一点至少可以作两条直线和已知道线不相交。

  这是一个与第5公设相矛盾的假设,按照这一假设应当推出与欧氏几何相矛盾的结果。但是并没有引出矛盾,而是推出了一个新的几何传统,逻辑严密。罗巴切夫斯基把这种抽象的新的几何系统最初称为“抽象几何学”。

  1826年 2月 11日,罗巴切夫斯基在喀山大学的一学术会议上,宣读了他的不朽论文——《几何原理的扼要简释及平行线定理的一个严格证明》。

  在这篇论文里,罗巴切夫斯基提出了“过直线外一点至少可以作两条直线和已知直线不相交”的“罗氏公设”,与欧氏几何中前四条公设相结合,推出了逻辑上毫无矛盾的非欧几何,或叫双曲几何。

  罗巴切夫斯基宣读论文的这一天,后来被定为非欧几何学的诞生日。

  但在当时,参加学术会议的委员们根本不相信罗巴切夫斯基的学说,否定它的价值,《喀山大学学报》也拒绝发表。

  罗巴切夫斯基认为:“任何科学赖以开始的起初概念是由感觉获得的,而由先天获得的是不应该完全相信的。”他坚信自己的思想是正确的,并不因为受到攻击和谩骂而退让,相反,为了维护真理而不屈不挠地坚持斗争,继续发展自己的思想和学说。

  这时候,喀山大学的政治形势发生了变化。1825年老沙皇亚历山大一世死后,惯于献媚的马格尼斯基向王太子康斯坦丁大献殷勤,而贬低尼古拉。但是他根本没有想到尼古拉继承了王位,于是被撤职,压制和打击罗巴切夫斯基就是他的罪行之一。

  罗巴切夫斯基升任物理数学系主任,1827年又担任喀山大学校长。

  罗巴切夫斯基就是在喀山大学这样特定的政治形势下,得以在该校的学术会议上宣读了非欧几何的论文,让世人知晓,而匈牙利的波耶作为一个服役军官,虽经种种努力和斗争,都无力使他的论文尽快问世。

  罗巴切夫斯基是一位十分大胆的数学家、管理学家和教育家,对旧的传统势力和封建思想不卑躬屈膝,敢于抵制各种不正之风。

  他在担任物理数学系主任和大学校长期间,对上级教育部门下达的指示有时不听,在他看来,教育部门的指示有时违反教育规律,不符合实际情况,不应该盲目执行。对违反客观规律和学校声誉的指示和意见,不管官职多大,一律抵制和反对,不怕丢官,不怕坐牢。

  一些不明真相受欺骗的人,对他的正义行为经常进行诬蔑和诽谤,甚至嘲笑和谩骂,但他从不因为这些舆论而放弃自己的观点和理想,从不放弃对科学的真诚,对真理的追求。

  罗巴切夫斯基在从事教育行政事务活动之余,继续研究他的新几何体系。1829年,他写成了《论几何学的定理》的论文,终于在1829年底至1830年初的一期《喀山大学学报》上发表了。

  罗巴切夫斯基的不朽功绩,在于他向人类几千年来确信不疑的欧氏几何体系进行了挑战,推翻了欧氏几何是唯一可能的空间形式的说法。非欧几何的产生,改变了欧氏几何中的平行公理,是几何学的重要组成部分,对整个数学的发展起了很大的促进作用。

  非欧几何是人类空间认识史上的一次质的飞跃,它后来在相对论中得到了论证,并在天体物理学和原子物理学中得到应用。

版权声明:本文由1495.com发布于文物考古,转载请注明出处:高斯都怕的数学天才是谁?高斯定理